Mysql-索引

Mysql-索引

引言

这篇文章我将用来介绍mysql当中十分重要的一种数据结构-索引。

索引概述

介绍

索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。

实例

表结构及其数据如下:假如我们要执行的SQL语句为 : select * from user where age = 45;

1). 无索引情况

在无索引情况下,就需要从第一行开始扫描,一直扫描到最后一行,我们称之为 全表扫描,性能很低。

2). 有索引情况优势

如果我们针对于这张表建立了索引,维护一种数据结构,这样我们查询数据的速度就会加快。

优势 :

提高数据检索的效率,降低数据库的IO成本。

通过索引列对数据进行排序,降低 数据排序的成本,降低CPU的消耗。

劣势:

索引列也是要占用空间的。

索引大大提高了查询效率,同时却也降低更新表的速度, 如对表进行INSERT、UPDATE、DELETE时,效率降低。

索引结构

概述

MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构,主要包含以下几种:

上述是MySQL中所支持的所有的索引结构,接下来,我们再来看看不同的存储引擎对于索引结构的支持情况。

我们平常所说的索引,如果没有特别指明,都是指B+树结构组织的索引。

那么,为什么索引的结构是B+树呢?

为什么InnoDB 索引的结构是B+树?

如果选择二叉树作为索引结构,会存在以下缺点:

顺序插入时,会形成一个链表,查询性能大大降低。

大数据量情况下,层级较深,检索速度慢。

此时大家可能会想到,我们可以选择红黑树,红黑树是一颗自平衡二叉树,那这样即使是顺序插入数据,最终形成的数据结构也是一颗平衡的二叉树。

但是,即使如此,由于红黑树也是一颗二叉树,所以也会存在一个缺点:

大数据量情况下,层级较深,检索速度慢。

所以,在MySQL的索引结构中,并没有选择二叉树或者红黑树,而选择的是B+Tree,那么什么是 B+Tree呢?在详解B+Tree之前,先来介绍一个B-Tree。

B-Tree,B树是一种多叉路衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。 以一颗最大度数(max-degree)为5(5阶)的b-tree为例,那这个B树每个节点最多存储4个key,5

个指针:

特点:

5阶的B树,每一个节点最多存储4个key,对应5个指针。

一旦节点存储的key数量到达5,就会裂变,中间元素向上分裂。

在B树中,非叶子节点和叶子节点都会存放数据。

B+Tree是B-Tree的变种,我们以一颗最大度数(max-degree)为4(4阶)的b+tree为例,来看一

下其结构示意图:

索引部分,仅仅起到索引数据的作用,不存储数据。

数据存储部分,在其叶子节点中要存储具体的数据。

最终我们看到,B+Tree 与 B-Tree相比,主要有以下三点区别:

所有的数据都会出现在叶子节点。

叶子节点形成一个单向链表。

非叶子节点仅仅起到索引数据作用,具体的数据都是在叶子节点存放的。

上述我们所看到的结构是标准的B+Tree的数据结构,接下来,我们再来看看MySQL中优化之后的

B+Tree。

MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点

的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能,利于排序。

最后,总结一下:

索引是帮助MySQL高效获取数据的数据结构,主要是用来提高数据检索的效率,降低数据库的IO成本,同时通过索引列对数据进行排序,降低数据排序的成本,也能降低了CPU的消耗。

MySQL的默认的存储引擎InnoDB采用的B+树的数据结构来存储索引,选择B+树的主要的原因是:第一阶数更多,路径更短,第二个磁盘读写代价B+树更低,非叶子节点只存储指针,叶子阶段存储数据,第三是B+树便于扫库和区间查询,叶子节点是一个双向链表

B树和B+树的区别是什么呢?

第一:在B树中,非叶子节点和叶子节点都会存放数据,而B+树的所有的数据都会出现在叶子节点,在查询的时候,B+树查找效率更加稳定

第二:在进行范围查询的时候,B+树效率更高,因为B+树都在叶子节点存储,并且叶子节点是一个双向链表

索引分类

在MySQL数据库,将索引的具体类型主要分为以下几类:主键索引、唯一索引、常规索引、全文索引。

而在在InnoDB存储引擎中,根据索引的存储形式,又可以分为以下两种:

聚集索引选取规则:

如果存在主键,主键索引就是聚集索引。如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。

如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。

聚集索引的叶子节点下挂的是这一行的数据 。

二级索引的叶子节点下挂的是该字段值对应的主键值。

索引语法

1). 创建索引

CREATE [ UNIQUE | FULLTEXT ] INDEX index_name ON table_name ( index_col_name,... ) ;

2). 查看索引

SHOW INDEX FROM table_name ;

3). 删除索引

DROP INDEX index_name ON table_name ;

SQL性能分析

SQL执行频率

MySQL 客户端连接成功后,通过 show [session|global] status 命令可以提供服务器状态信

息。通过如下指令,可以查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次:

-- session 是查看当前会话 ;

-- global 是查询全局数据 ;

SHOW GLOBAL STATUS LIKE 'Com_______';

Com_delete: 删除次数

CREATE UNIQUE INDEX idx_user_phone ON tb_user(phone);

1

CREATE INDEX idx_user_pro_age_sta ON tb_user(profession,age,status);

1

CREATE INDEX idx_email ON tb_user(email);

1

show index from tb_user;

1

-- session 是查看当前会话 ;

-- global 是查询全局数据 ;

SHOW GLOBAL STATUS LIKE 'Com_______';

Com_insert: 插入次数

Com_select: 查询次数

Com_update: 更新次数

通过上述指令,我们可以查看到当前数据库到底是以查询为主,还是以增删改为主,从而为数据库优化提供参考依据。 如果是以增删改为主,我们可以考虑不对其进行索引的优化。 如果是以查询为主,那么就要考虑对数据库的索引进行优化了。

慢查询日志

慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有SQL语句的日志。

MySQL的慢查询日志默认没有开启,我们可以查看一下系统变量 slow_query_log。

如果要开启慢查询日志,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:

explain

EXPLAIN 或者 DESC命令获取 MySQL 如何执行 SELECT 语句的信息,包括在 SELECT 语句执行过程中表如何连接和连接的顺序。

语法:

Explain 执行计划中各个字段的含义:

-- 直接在select语句之前加上关键字 explain / desc

EXPLAIN SELECT 字段列表 FROM 表名 WHERE 条件 ;

Explain 执行计划中各个字段的含义:

id

select查询的序列号,表示查询中执行select子句或者是操作表的顺序

(id相同,执行顺序从上到下;id不同,值越大,越先执行)。

select_type

表示 SELECT 的类型,常见的取值有 SIMPLE(简单表,即不使用表连接或者子查询)、PRIMARY(主查询,即外层的查询)、 UNION(UNION 中的第二个或者后面的查询语句)、 SUBQUERY(SELECT/WHERE之后包含了子查询)等

type

表示连接类型,性能由好到差的连接类型为NULL、system、const、 eq_ref、ref、range、 index、all 。

possible_key

显示可能应用在这张表上的索引,一个或多个。

key

实际使用的索引,如果为NULL,则没有使用索引。

key_len

表示索引中使用的字节数, 该值为索引字段最大可能长度,并非实际使用长度,在不损失精确性的前提下, 长度越短越好 。

rows

MySQL认为必须要执行查询的行数,在innodb引擎的表中,是一个估计值, 可能并不总是准确的。

filtered

表示返回结果的行数占需读取行数的百分比, filtered 的值越大越好。

索引使用

最左前缀法则

如果索引了多列(联合索引),要遵守最左前缀法则。最左前缀法则指的是查询从索引的最左列开始, 并且不跳过索引中的列。如果跳跃某一列,索引将会部分失效(后面的字段索引失效)。

在 tb_user 表中,有一个联合索引,这个联合索引涉及到三个字段,顺序分别为:profession, age,status。

对于最左前缀法则指的是,查询时,最左变的列,也就是profession必须存在,否则索引全部失效。

而且中间不能跳过某一列,否则该列后面的字段索引将失效。

范围查询

联合索引中,出现范围查询(>,<),范围查询右侧的列索引失效。

在业务允许的情况下,尽可能的使用类似于 >= 或 <= 这类的范围查询,而避免使用 > 或 <

索引失效情况

索引列运算

不要在索引列上进行运算操作, 索引将失效。

字符串不加引号

字符串类型字段使用时,不加引号,索引将失效。

模糊查询

如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效。

or连接条件

用or分割开的条件, 如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会被用到。

当or连接的条件,左右两侧字段都有索引时,索引才会生效。、

数据分布影响

如果MySQL评估使用索引比全表更慢,则不使用索引。

MySQL在查询时,会评估使用索引的效率与走全表扫描的效率,如果走全表扫描更快,则放弃索引,走全表扫描。 因为索引是用来索引少量数据的,如果通过索引查询返回大批量的数据,则还不如走全表扫描来的快,此时索引就会失效。

覆盖索引

尽量使用覆盖索引,减少select *。 那么什么是覆盖索引呢? 覆盖索引是指 查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到 。

什么是回表查询?

回表的意思就是通过二级索引找到对应的主键值,然后再通过主键值找到聚集索引中所对应的整行数据,这个过程就是回表。

前缀索引

当字段类型为字符串(varchar,text,longtext等)时,有时候需要索引很长的字符串,这会让 索引变得很大,查询时,浪费大量的磁盘IO, 影响查询效率。此时可以只将字符串的一部分前缀,建 立索引,这样可以大大节约索引空间,从而提高索引效率。

1). 语法

create index idx_xxxx on table_name(column(n)) ;

2). 前缀长度

可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值, 索引选择性越高则查询效率越高, 唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。

索引设计原则

1). 针对于数据量较大,且查询比较频繁的表建立索引。

2). 针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索引。

3). 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高。

4). 如果是字符串类型的字段,字段的长度较长,可以针对于字段的特点,建立前缀索引。

5). 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率。

6). 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价也就越大,会影响增删改的效率。

7). 如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含 NULL值时,它可以更好地确定哪个索引最有效地用于查询。

LICENSED UNDER CC BY-NC-SA 4.0